

Dynamic Behaviour and Operational Flexibility of the ATP Processor

International Oil Shale Symposium, Tallinn 2013 Steven Odut, P.Eng.

Mineable Oil

Shale oil(*) is mineable oil.

* Not that stuff they pump out of the ground

A good miner will deliver consistent feed to the process plant – but there will be variability.

The process plant must accommodate ore variability and provide sufficient flexibility to respond to operational challenges.

Shale oil production starts at the mine

Case Studies

Kerosene Creek Oil Shale

Free moisture Design 24% Actual 20-27%

After dryer Design 8% Actual 8 to 18%

Kerogen Design 27%

Horizons A, B1, C1a.b.c.d.e, C2, D1, D2, E

Other surprises Siderite nodules

Thermal sensitivity during drying

Emission and oil quality impacts

Tropical rainstorms (+100 mm per hour)

Al Lajjun Oil Shale

Free moisture Design 3% Actual 3-6% (100% variation)

Kerogen Design 22% Actual 15-26% and soluble bitumen present

Horizons A0, A1, B, C, D, M

The miners must deliver what the plant wants. The plant must accept what the miners deliver.

Geological Variation

Geological Variation

Geological Variation

The ATP Processor

The ATP Processor Mechanical Arrangement

The ATP Processor Depicted as Discrete Process Vessels

The ATP Processor – Process Control

The ATP Processor - Process Control Boundaries

	Oil Shale Feed Rate, t/h	Preheat Temp, °C	Retort Temp, °C	Combustion Temp, °C	
Low Limit	100	180	475	675	
Normal Target	211	270	505	740	
High Limit	265	300	550	760	
Low Limit Reason	HC system turndown	Shale not dry before retort	Reaction kinetics	Combustion kinetics	
High Limit Reason	Flow of solids through ATP	Premature pyrolysis	Excessive pyrolysis	Metallurgy	

Retort temperature controlled +/- 5°C of target Preheat & combustion temp. fluctuate within acceptable bounds Oil shale rate maximized until system bottleneck approached

Example: Feed Moisture – Operation from 4 to 18% H₂O

Example: Feed Moisture Content

Example: Feed Moisture Content

Example: Feed Moisture Content

The ATP Processor - Wide Operating Envelope

Process Response to Feed Rate Change

ThyssenKrupp Resource Technologies

Stable and Predictable Responses

		<u> </u>												
Input Variable	Input Change	Preheat Exit Temperature			Retort Exit Temperature		Combustion Temperature				Ash Discharge Rate			
ATP Oil Shale Feed Rate	5 t/h 🗸	Initial response at 25 minutes			Initial response at 30 minutes		Initial response at 35 minutes			es	Initial response at 60 minutes			
		Final response = +11°C			Final response = +23°C		Final response = +21°C				Final response = -3.5 t/h			
		+20°C	1		+20°C	1			0°C			0	1h	2h
							_				_			
											1			
		0	1h	2h	0	1h	2h	0		1h	2h	-4 t/h		
Coke Combustion Air Rate	2.5%	Initial response at 10 minutes			Initial response at 15 minutes		Initial response at 1 minute			Initial response at 1 minute				
		Final reponse = +14°C			Final reponse = +28°C		Final reponse = +34°C				Final reponse = 0 t/h			
		+20°C			+20°C				0°C		-	+4 t/h	T	
		0	1h	2h	0	1h	2h	0		1h	2h	0	1h	2h
Recycle Gate Position	40 t/h ↑	Initial response at 10 minutes			Initial respons	Initial response at 2 minutes Initial response		ial response	nse at 10 minutes		Initial response at 10 minutes			
		Final response = -2°C			Final response = +10°C		Final response = -6°C			Final response = 0 t/h				
		+10°C			+1 0℃				0°C			0	1h	2h
						<u> </u>						\		
		0	1h	2h	Ó	1h	2h	0	1	1h	2h			
		-10°C			-10°C			-10	rc			-10 t/h		
ATP Rotational Speed	0.3 rpm	Initial response at 5 minutes			Initial respons	Initial response at 5 minutes Initial respons		se at 5 minutes		Initial response at 5 minutes				
		Final response = +1°C			Final response = +3°C		Final response = +3°C			Final response = 0 t/h				
		0	1h	2h	0	1h	2h	0	•	1h	2h	+10 t/h		
		\ /												
		-20°C												
		-20°C			-20°C			-20	°C			0	1h	2h
		•	•			-							•	

Concluding Remarks

Ore Feed Flexibility

- Ore variability will occur.
- ATP Systems are designed for specific oil shale, but are fully capable of handling a range of grade and moisture contents, giving operators increased flexibility in mine planning and plant operation.

Operational Stability

- ATP Processor is large rotary mineral processing unit which provides stable material handling and thermal processing.
- Predictable and controllable.
- Rotary machines are recognized for their tolerance to variations in feed and to transient operations.

Decoupling

 Important to decouple process units so that upsets do not propagate through multiple systems.

Questions?

谢谢 Thank You شكرا Kiitos Vielen Dank Merci Aitäh Спасибо

Definitions / Legend

ATP Alberta Taciuk Process

bbl Barrel of Oil (~159 Litres)

°C Degrees Celsius

FC Flow Control

HC Hydrocarbons

LTOM Litres of Oil Per Tonne Of Zero Moisture Ore

PC Pressure Control

rpm Rotations per Minute

SCO Synthetic Crude Oil

t/h Metric Tonnes per Hour

TC Temperature Control

Temp. Temperature

wt% Weight Percent

Contact Information

UMATAC Industrial Processes Inc.

Suite #110, 6835 Railway Street S.E.

Calgary, Alberta, Canada

T2H 2V6

Telephone: +1-403-910-1000

Facsimile: +1-403-910-1040

email: umatac@thyssenkrupp.com

web: www.umatac.ca

